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1. Introduction

Recent developments in AdS/CFT correspondence between type IIB strings on AdS5 ×S5

and its dual N = 4 super Yang-Mills (SYM) theories [1] are mainly based on the integrabil-

ities discovered in both theories. Integrability of the SYM side appears in the calculations

of conformal dimensions which are related to the string energies according to the AdS/CFT

correspondence. A remarkable observation by Minahan and Zarembo [2] is that the con-

formal dimension of an operator composed of scalar fields in the N = 4 SYM in the planar

limit can be computed by diagonalizing the Hamiltonian of one-dimensional integrable spin

chain model. This task can be done by solving a set of coupled algebraic equations called

Bethe ansatz equations. It has been shown that explicit calculation of the eigenvalues for

various SYM operators agree with those computed from the SYM perturbation theory.
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This result has been further extended to the full PSU(2, 2|4) sector [3] and the Bethe

ansatz equations which are supposed to hold for all loops are conjectured [4, 5].

The string side of the correspondence is mostly studied at the classical level due to

the lack of full quantization. The type IIB string theory on AdS5 × S5 is described by a

nonlinear sigma model with PSU(2, 2|4) symmetry [6]. This sigma model has been shown

to have an infinite number of local and nonlocal conserved currents [7] and some of the

conserved charges such as energy and angular momentum are computed explicitly from

the classical integrability (see, for example, [8] and the references therein). These results

based on the classical integrability provide valuable information on the AdS/CFT duality

in the domain of large t’Hooft coupling constant. A new direction to quantizing the string

theory is to find exact S-matrix between the fundamental spectrum of the theory on the

world sheet. It has been shown that the S-matrix along with the exact particle spectrum

can be determined by the underlying symmetry and integrability in the theory [9, 10]. The

overall scalar factor of the S-matrix, sometimes called as dressing phase, which can not be

determined by the symmetry alone, has been computed exactly [11, 12] from the crossing

relation [13]. In this process, the explicit expression of the dressing phase in the classical

limit, which was determined by the classical integrability, was essential [14].

Various classical solutions play an important role in testing and understanding the

correspondence. The classical giant magnon (GM) state [15] discovered in Rt × S2 gives a

strong support for the conjectured all-loop SU(2) spin chain and makes it possible to get

a deep insight in the AdS/CFT duality. In addition, this solution is related to classical

sine-Gordon (SG) model which provides a geometric understanding of the string in curved

space. This is extended to the magnon bound state which corresponds to a string moving on

Rt ×S3 and related to the complex sine-Gordon (CSG) model [16, 17]. Further extensions

to Rt×S5 have been also worked out [18 – 21]. Another interesting classical string solution

is the spiky string which has been first found in the AdS space [22] and in the S5 [23].

A particular case of these states is the single spike (SS) which describes a string which

is wrapping infinitely around the equator with a spike in the middle. This has been

investigated in a static gauge using the Nambu-Goto action in S2 and S3 by Ishizeki

and Kruczenski [24]. In addition, they have shown that both the GM and the SS solutions

on S2 can be related to the classical SG equation. This is possible by reformulating the

problem in a conformal gauge using the Polyakov action and assuming a particular ansatz

for string coordinates which leads to the well-known one-dimensional integrable Neumann-

Rosochatius (NR) system. This approach has been previously developed and applied to

find classical solutions in [25, 26, 18]. The application of the NR system to the SS in S3

has been worked out in [27]. Also a semiclassical quantization of the SS has been recently

studied in [28]

More recently the finite-size correction, or the Lüscher correction, is actively investi-

gated as a new window for the AdS/CFT correspondence. The integrable spin chains based

on the Bethe ansatz are showing several limitations such as the wrapping problem which

occurs in dealing with a composite operator of a finite length in a strong t’Hooft coupling

limit. It is quite important to compute the conformal dimensions of such operators and

compare with the energies of the string states with all other quantum numbers finite. One
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way of confirming the S-matrix is to derive the Lüscher correction from the S-matrix and

compare with the classical string result. The finite-size effects for the GM have been com-

puted from the S-matrix [29] and are shown to be consistent with classical string results.

Finite-size effects for the GM has been first found by solving the string sigma model in a

uniform and conformal gauges [30] and, subsequently, many related results, such as gauge

independence [31], multi GM states [32] and quantization of finite-size GM [33], have been

derived.1 This result has been also related to explicit solutions of the SG equation in a

finite-size space [34].

In this article we compute the finite-size effects for the SS in both S2 and S3. The

finite-size SS solutions were related to the helical string solutions without analyzing the

corrections to the energy-charge dispersion relations in [35]. While there are some con-

jectures for the quantum SS from the integrable spin chain models such as the Hubbard

model [24] or antiferromagnetic SO(6) spin chain model [35], the S-matrix for the SS is

known only in the classical limit [36] and still not available at the full quantum level. This

excludes the S-matrix approach for the Lüscher correction and leaves the classical analysis

as a viable option.

The paper is organized as follows. In section 2 we introduce the classical string action

on Rt ×R3 and the corresponding NR system. This system is shown to be equivalent to a

particular case of the CSG equation in section 3. In section 4 we provide our main result

on the finite-size effects of the SS on both Rt×S2 and Rt×S3. We conclude the paper with

some remarks in section 5 and with appendices containing the explicit relationship between

the NR system and CSG for the GM and SS in infinite-size system and ǫ-expansions for

elliptic functions and relevant coefficients.

2. Strings on Rt × S
3 and the NR integrable system

Let us start with the Polyakov string action

SP = −T
2

∫

d2ξ
√−γγabGab, Gab = gMN∂aX

M∂bX
N , (2.1)

∂a = ∂/∂ξa, a, b = (0, 1), (ξ0, ξ1) = (τ, σ), M,N = (0, 1, . . . , 9),

and choose conformal gauge γab = ηab = diag(−1, 1), in which the Lagrangian and the

Virasoro constraints take the form

Ls =
T

2
(G00 −G11) (2.2)

G00 +G11 = 0, G01 = 0. (2.3)

where T is the string tension.

We embed the string in Rt × S3 subspace of AdS5 × S5 as follows

Z0 = Reit(τ,σ), Wj = Rrj(τ, σ)eiϕj (τ,σ),

2
∑

j=1

WjW̄j = R2,

1Some topics related to finite-size effects were also considered in [42].
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where R is the common radius of AdS5 and S5, and t is the AdS time. For this embedding,

the metric induced on the string worldsheet is given by

Gab = −∂(aZ0∂b)Z̄0 +

2
∑

j=1

∂(aWj∂b)W̄j = R2



−∂at∂bt+

2
∑

j=1

(

∂arj∂brj + r2j∂aϕj∂bϕj

)



 .

The corresponding string Lagrangian becomes

L = Ls + Λs





2
∑

j=1

r2j − 1



 ,

where Λs is a Lagrange multiplier. In the case at hand, the background metric does not

depend on t and ϕj . Therefore, the conserved quantities are the string energy Es and two

angular momenta Jj , given by

Es = −
∫

dσ
∂Ls

∂(∂0t)
, Jj =

∫

dσ
∂Ls

∂(∂0ϕj)
. (2.4)

It is known that restricting ourselves to the case

t(τ, σ) = κτ, rj(τ, σ) = rj(ξ), ϕj(τ, σ) = ωjτ + fj(ξ), (2.5)

ξ = ασ + βτ, κ, ωj , α, β = constants,

reduces the problem to solving the NR integrable system [18]. For the case under consid-

eration, the NR Lagrangian reads (prime is used for d/dξ)

LNR = (α2 − β2)
2
∑

j=1

[

r′2j − 1

(α2 − β2)2

(

C2
j

r2j
+ α2ω2

j r
2
j

)]

+ Λs





2
∑

j=1

r2j − 1



 , (2.6)

where the parameters Cj are integration constants after single time integration of the

equations of motion for fj(ξ):

f ′j =
1

α2 − β2

(

Cj

r2j
+ βωj

)

. (2.7)

The constraints (2.3) give the conserved Hamiltonian HNR and a relation between the

embedding parameters and the arbitrary constants Cj:

HNR = (α2 − β2)
2
∑

j=1

[

r′2j +
1

(α2 − β2)2

(

C2
j

r2j
+ α2ω2

j r
2
j

)]

=
α2 + β2

α2 − β2
κ2, (2.8)

2
∑

j=1

Cjωj + βκ2 = 0. (2.9)

For closed strings, rj and fj satisfy the following periodicity conditions

rj(ξ + 2πα) = rj(ξ), fj(ξ + 2πα) = fj(ξ) + 2πnα, (2.10)
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where nα are integer winding numbers. On the ansatz (2.5), Es and Jj introduced in (2.4)

take the form

Es =

√
λ

2π

κ

α

∫

dξ, Jj =

√
λ

2π

1

α2 − β2

∫

dξ

(

β

α
Cj + αωjr

2
j

)

, (2.11)

where we have used that the string tension and the ’t Hooft coupling constant λ are related

by TR2 =
√

λ
2π .

In order to identically satisfy the embedding condition

2
∑

j=1

r2j − 1 = 0,

we introduce a new variable θ(ξ) by

r1(ξ) = sin θ(ξ), r2(ξ) = cos θ(ξ). (2.12)

Then, eq. (2.8) leads to

θ′(ξ) = ± 1

α2 − β2

[

(α2 + β2)κ2 − C2
1

sin2 θ
− C2

2

cos2 θ
− α2

(

ω2
1 sin2 θ + ω2

2 cos2 θ
)

]1/2

(2.13)

≡ ± 1

α2 − β2
Θ(θ),

which can be integrated to give

ξ(θ) = ±(α2 − β2)

∫

dθ

Θ(θ)
. (2.14)

From eqs. (2.7) and (2.12), we can obtain

f1 =
βω1ξ

α2 − β2
± C1

∫

dθ

sin2 θ Θ(θ)
, (2.15)

f2 =
βω2ξ

α2 − β2
± C2

∫

dθ

cos2 θ Θ(θ)
. (2.16)

Let us also point out that the solutions for ξ(θ) and fj must satisfy the conditions (2.9)

and (2.10). All these solve formally the NR system for the present case.

As far as we are searching for real solutions, the expressions under the square roots

in (2.13) must be positive, which put restrictions on the possible values of the parameters.

Of course, this condition arises from the requirement that the NR Hamiltonian (2.8) should

be positive.

3. Relationship between the NR and CSG systems

Due to Pohlmeyer [37], we know that the string dynamics on Rt × S3 can be described by

the CSG equation. In this section, we derive the relation between the solutions of the two

integrable systems.
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The CSG system is defined by the Lagrangian

L(ψ) =
ηab∂aψ̄∂bψ

1 − ψ̄ψ
+M2ψ̄ψ

which give the equation of motion

∂a∂
aψ + ψ̄

∂aψ∂
aψ

1 − ψ̄ψ
−M2(1 − ψ̄ψ)ψ = 0.

If we represent ψ in the form

ψ = sin(φ/2) exp(iχ/2),

the Lagrangian can be expressed as

L(φ, χ) =
1

4

[

∂aφ∂
aφ+ tan2(φ/2)∂aχ∂

aχ+ (2M)2 sin2(φ/2)
]

,

along with the equations of motion

∂a∂
aφ− 1

2

sin(φ/2)

cos3(φ/2)
∂aχ∂

aχ−M2 sinφ = 0, (3.1)

∂a∂
aχ+

2

sinφ
∂aφ∂

aχ = 0. (3.2)

The SG system corresponds to a particular case of χ = 0.

To relate the NR system with the CSG integrable system, we consider the case

φ = φ(ξ), χ = Aσ +Bτ + χ̃(ξ),

where φ and χ̃ depend on only one variable ξ = ασ + βτ in the same way as in our NR

ansatz (2.5). Then the equations of motion (3.1), (3.2) reduce to

φ′′ − 1

2

sin(φ/2)

cos3(φ/2)

[

χ̃′2 + 2
Aα −Bβ

α2 − β2
χ̃′ +

A2 −B2

α2 − β2

]

− M2 sinφ

α2 − β2
= 0, (3.3)

χ̃′′ +
2φ′

sinφ

(

χ̃′ +
Aα−Bβ

α2 − β2

)

= 0. (3.4)

We further restrict ourselves to the case of Aα = Bβ. A trivial solution of eq. (3.4)

is χ̃ = constant, which corresponds to the solutions of the CSG equations considered

in [17, 38] for a GM string on Rt × S3. More nontrivial solution of (3.4) is

χ̃ = Cχ

∫

dξ

tan2(φ/2)
. (3.5)

The replacement of the above into (3.3) gives

φ′′ =
M2 sinφ

α2 − β2
+

1

2

[

C2
χ

cos(φ/2)

sin3(φ/2)
− A2

β2

sin(φ/2)

cos3(φ/2)

]

. (3.6)
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Integrating once, we obtain

φ′ = ±
[

(

Cφ − 2M2

α2 − β2

)

+
4M2

α2 − β2
sin2(φ/2) − A2/β2

1 − sin2(φ/2)
− C2

χ

sin2(φ/2)

]1/2

(3.7)

≡ ±Φ(φ),

from which we get

ξ(φ) = ±
∫

dφ

Φ(φ)
, χ(φ) =

A

β
(βσ + ατ) ± Cχ

∫

dφ

tan2(φ/2)Φ(φ)
.

All these solve the CSG system for the considered particular case. It is clear from (3.7)

that the expression inside the square root must be positive.

Now we are ready to establish a correspondence between the NR and CSG integrable

systems described above. To this end, we make the following identification

sin2(φ/2) ≡
√
−G
K2

(3.8)

where G is the determinant of the induced metric Gab computed on the constraints (2.3)

and K2 is a parameter which will be fixed later.2 For our NR system,
√
−G is given by

√
−G =

R2α2

α2 − β2

[

(κ2 − ω2
1) + (ω2

1 − ω2
2) cos2 θ

]

. (3.9)

We want the field φ, defined in (3.8) through NR quantities, to identically satisfy (3.7)

derived from the CSG equations. This imposes relations between the parameters involved,

which are given in appendix A. In this way, we mapped all string solutions on Rt × S3

(in particular on Rt × S2) described by the NR integrable system onto solutions of the

CSG (in particular SG) equations. From (A.1) one can see that the parameters A and

Cχ are nonzero in general on Rt × S2 where ω2 = C2 = 0. This means that there exist

string solutions on Rt × S2 which correspond to solutions of the CSG system. Only when

M2 = κ2, all string solutions on Rt × S2 are represented by solutions of the SG equation.

For the GM and SS solutions, which we are interested in, the relations between the

NR and CSG parameters simplify a lot. Let us write them explicitly. The GM solutions

correspond to C2 = 0, κ2 = ω2
1 . This leads to

Cφ =
2

α2 − β2

[

3M2 − 2

(

ω2
1 − ω2

2

1 − β2/α2

)]

, K2 = R2M2, (3.10)

A2 =
4

α2/β2 − 1

(

M2 − ω2
1 +

ω2
2

1 − β2/α2

)

, Cχ = 0.

Therefore, for all GM strings the field χ is linear function at most. Since A = Cχ = 0

implies χ = 0, it follows from here that there exist GM string solutions on Rt × S3, which

are mapped not on CSG solutions but on SG solutions instead. This happens exactly when

M2 = ω2
1 −

ω2
2

1 − β2/α2
.

2For K2 = κ2, this definition of the angle φ coincides with the one used in [17], which is based on the

Pohlmeyer’s reduction procedure [37].
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In that case the nonzero parameters are

K2 = R2

(

ω2
1 −

ω2
2

1 − β2/α2

)

, Cφ =
2

α2 − β2

(

ω2
1 − ω2

2

1 − β2/α2

)

,

and the corresponding solution of the SG equation can be found from (3.7) to be

sin(φ/2) =
1

cosh

[

√

ω2

1
−ω2

2
/(1−β2/α2)

1−β2/α2

(

σ + β
ατ
)

− η0

] , η0 = const. (3.11)

Replacing (3.11) in (3.8), (3.9), one obtains the GM solution (A.4) as it should be.

For the SS solutions C2 = 0, κ2 = ω2
1α

2/β2. This results in

Cφ =
2

β2 − α2

[

2

(

2ω2
1α

2/β2 +
ω2

2

β2/α2 − 1

)

− 3M2

]

,

A2 =
4

M4(1 − α2/β2)

(

ω2
1α

2/β2 −M2
)2
(

ω2
2

β2/α2 − 1
−M2

)

, (3.12)

Cχ =
2ω2

1ω2α
3

M2(β2 − α2)β2
, K2 = R2M2.

We want to point out that Cχ is always nonzero on S3 contrary to the GM case, which

makes χ also non-vanishing. To our knowledge, the CSG solutions corresponding to the

SS on Rt × S3 are not given in the literature. To study this problem, we will consider the

case when A = 0. A can be zero when

M2 = κ2 = ω2
1α

2/β2 or M2 =
ω2

2

β2/α2 − 1
, (3.13)

As is seen from (3.13), we have two options, and we restrict ourselves to the first one.3

Replacing M2 = ω2
1α

2/β2 in (3.12) and using the resulting expressions for Cφ and Cχ

in (3.7), one obtains the simplified equation

φ′2 =
4

β2 − α2

[

ω2
1

α2

β2
cos2(φ/2) − ω2

2

β2/α2 − 1
cot2(φ/2)

]

with solution

sin2(φ/2) = tanh2 (Cξ) +
ω2

2

ω2
1 (1 − α2/β2) cosh2 (Cξ)

, (3.14)

where

C =
αω1

√

1 − α2/β2 − ω2
2/ω

2
1

β2 (1 − α2/β2)
.

This agrees with eqs. (3.8) and (3.9). By inserting (3.14) into (3.5) one can find

χ = χ̃ = 2arctan

[

ω1

ω2

√

1 − α2/β2 − ω2
2/ω

2
1 tanh (Cξ)

]

.

3It turns out that the second option does not allow real solutions.
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Hence, the CSG field ψ for the case at hand is given by

ψ =

√

tanh2 (Cξ) +
ω2

2

ω2
1 (1 − α2/β2) cosh2 (Cξ)

(3.15)

× exp

{

i arctan

[

ω1

ω2

√

1 − α2/β2 − ω2
2/ω

2
1 tanh (Cξ)

]}

.

Here we have set the integration constants φ0, χ0 equal to zero. Several examples, which

illustrate the established NR - CSG correspondence, are considered in the appendix A.

4. Finite-Size effects

In this section, we will obtain finite-size string solutions, their images in the (complex)

sine-Gordon system, and the leading corrections to the SS “E −∆ϕ” relation: first for the

Rt × S2 case, then for the SS string with two angular momenta.

4.1 Strings on Rt × S2

Here we present the solutions of eq. (A.3), when

0 <
κ2

ω2
1

< 1, 0 <
β2κ2

α2ω2
1

< 1

for the two possibilities: α2 > β2 and α2 < β2. The first case reduces to the GM string

in the limit κ2 = ω2
1, while the second one corresponds to the SS solution in α2ω2

1 = β2κ2

limit.

4.1.1 The giant magnon

For α2 > β2 the solution of eq. (A.3) is given by

cos θ =
cos θmin

dn (C(ξ − ξ0)|m)
, cos θmin ≡

√

1 − κ2/ω2
1 , (4.1)

C = ∓ω1

√

1 − β2κ2/α2ω2
1

α(1 − β2/α2)
, m ≡ κ2(1 − β2/α2)

ω2
1(1 − β2κ2/α2ω2

1)
,

where dn(u|m) is one of the elliptic functions and ξ0 is an integration constant. The

modulus m is positive. By using the relation [40]

dn(u+ K(m)|m) =

√
1 −m

dn(u|m)
,

and after choosing Cξ0 = K, the above solution can be rewritten as

cos θ = cos θmaxdn (Cξ|m) , cos θmax ≡
√

1 − β2κ2/α2ω2
1. (4.2)

In this form, (4.2) corresponds to the Arutyunov-Frolov-Zamaklar solution [30] (see also [31,

34]).
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Inserting (4.1) into (2.15), one can find [39]

f1 =
β(ω2

1 − κ2)

ω1(α2 − β2)

[

ξ +

√

α2 − β2

ω2
1

Π

(

am(Cξ −K),−m

κ2

∣

∣

∣

∣

m

)

]

,

where Π is the elliptic integral of third kind. Hence, the string solution is given by

W1 = R
√

1 −
(

1 − β2κ2/α2ω2
1

)

dn2 (Cξ|m)

× exp

{

iω1

1 − β2/α2

[

(1 − β2κ2/α2ω2
1)τ + (1 − κ2/ω2

1)
β

α
σ

]

(4.3)

+
iβ(1 − κ2/ω2

1)

αω1

√

1 − β2/α2
Π

(

am(Cξ − K),−m

κ2

∣

∣

∣

∣

m

)

}

,

W2 = R
√

1 − β2κ2/α2ω2
1dn (Cξ|m) , Z0 = R exp(iκτ).

Now, let us see which solution of the SG equation is the image of (4.3). From eqs. (3.8)

and (3.9), we have

sin2(φ/2) =
κ2
(

1 − κ2/ω2
1

)

sn2 (Cξ − K|m)

M2
(

1 − β2κ2/α2ω2
1

)

dn2 (Cξ − K|m)
. (4.4)

This solution of the CSG system reduces to that of the SG equation for M2 = κ2. On the

other hand, eq. (3.7) with M2 = κ2 gives

sin2(φ/2) = sn2

(

∓κ
√

ω2
1/κ

2 − 1

α (1 − β2/α2)
(ξ − ξ0)

∣

∣

∣

∣

− 1 − β2/α2

ω2
1/κ

2 − 1

)

.

One can see that the two results match if M2 = κ2 and Cξ0 = K from an identity [40]

sn (u| −m) =
1√

1 +m

sn
(

u
√

1 +m|m(1 +m)−1
)

dn
(

u
√

1 +m|m(1 +m)−1
) .

In order to find the energy-charge relation for this string configuration, we need first

to compute the conserved quantities. In accordance with (2.11), we have

Es ≡ 2π√
λ
Es = −2

κ

α

∫ θmax

θmin

dθ

θ′
= 2

κ(1 − β2/α2)

ω1

√

1 − β2κ2/α2ω2
1

K(m),

J ≡ 2π√
λ
J1 = 2

αω1

α2 − β2

∫ θmax

θmin

dθ

θ′

(

sin2 θ − β2κ2

α2ω2
1

)

= 2
√

1 − β2κ2/α2ω2
1 [K(m) − E(m)] ,

which leads to

Es − J = 2
√

1 − β2κ2/α2ω1

[

E(m) − (1 − κ/ω1)
1 + β2κ/α2ω1

1 − β2κ2/α2ω2
1

K(m)

]

.

The worldsheet momentum can be expressed as

p = 2

∫ θmax

θmin

dθ

θ′
f ′1 = −2

β/α
√

1 − β2κ2/α2ω2
1

[

α2

β2
Π

(

1 − α2

β2

∣

∣

∣

∣

m

)

− K(m)

]

.
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In the above expressions, K(m), E(m) and Π(n|m) are the complete elliptic integrals.

In terms of new parameters defined by

ǫ ≡ 1 −m, v ≡ −β/α,

these expressions can be simplified as follows:

Es = 2
√

(1 − v2)(1 − ǫ)K(1 − ǫ), J = 2

√

1 − v2

1 − v2ǫ
[K(1 − ǫ) − E(1 − ǫ)] ,

Es − J = 2

√

1 − v2

1 − v2ǫ

[

E(1 − ǫ) −
(

1 −
√

(1 − v2ǫ)(1 − ǫ)
)

K(1 − ǫ)
]

,

p = 2v

√

1 − v2ǫ

1 − v2

[

1

v2
Π

(

1 − 1

v2
|1 − ǫ

)

− K(1 − ǫ)

]

.

We are interested in the behavior of these quantities in the limit ǫ→ 0. To establish it, we

will use the expansions for the elliptic functions given in appendix B.

Our approach is as follows. First, we expand Es, J and p about ǫ = 0 keeping v

independent of ǫ. Second, we introduce v(ǫ) according to the rule

v(ǫ) = v0(p) + v1(p)ǫ+ v2(p)ǫ log(ǫ)

and expand again. For p to be finite, we find

v0(p) = cos(p/2), v1(p) =
1

4
sin2(p/2) cos(p/2)(1 − log(16)),

v2(p) =
1

4
sin2(p/2) cos(p/2).

After that, from the expansion for J , we obtain ǫ as a function of J and p

ǫ = 16 exp

(

− J
sin(p/2)

− 2

)

.

Finally, using all these in the expansion for Es − J , we derive

Es − J = 2 sin(p/2)

[

1 − 4 sin2(p/2) exp

(

− J
sin(p/2)

− 2

)]

,

which reproduces the leading finite-size effects of the GM derived in [30, 31, 34].

4.1.2 The single spike

Now, we are going to consider the second possibility, namely, α2 < β2. This time, the

solution of the equation (A.3) can be written as

cos θ = cos θmaxdn (Cξ|m) , cos θmax ≡
√

1 − κ2/ω2
1 , (4.5)

C = ±αω1

√

1 − κ2/ω2
1

β2(1 − α2/β2)
, m ≡ β2/α2 − 1

ω2
1/κ

2 − 1
.
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Here the new modulus m is positive again. From (2.15), one can find

f1 = ± β/α
√

1 − κ2/ω2
1

Π
(

am(Cξ), β2/α2 − 1|m
)

− ω1

1 − α2/β2

(

α

β
σ + τ

)

.

This results in the following string solution

W1 = R
√

1 −
(

1 − κ2/ω2
1

)

dn2 (Cξ|m)

× exp

{

−iω1
α/β

1 − α2/β2

(

σ +
α

β
τ

)

± i
β/α

√

1 − κ2/ω2
1

Π
(

am(Cξ), β2/α2 − 1|m
)

}

,

W2 = R
√

1 − κ2/ω2
1dn (Cξ|m) , Z0 = R exp(iκτ).

From eqs. (3.8) and (3.9), the CSG solution corresponding to (4.6)

sin2(φ/2) =
κ2

M2
sn2 (Cξ|m) (4.6)

becomes that of the SG after fixing M2 = κ2. On the other hand, from (3.7) we get

sin2(φ/2) = sn2

(

±κ
√

ω2
1/κ

2 − 1

α(β2/α2 − 1)
(ξ − ξ0)

∣

∣

∣

∣

m

)

.

Setting ξ0 = 0 and rewriting

±κ
√

ω2
1/κ

2 − 1

α(β2/α2 − 1)
ξ = ±ω1

α
√

1 − κ2/ω2
1

β(1 − α2/β2)

(

α

β
σ + τ

)

= Cξ,

we find agreement with (4.6) if M2 = κ2.

Next, let us compute the conserved quantities for the present string solution. By

using (2.11), we receive

Es = 2
κ

α

∫ θmax

θmin

dθ

θ′
= 2

κ(β2/α2 − 1)

ω1

√

1 − κ2/ω2
1

K(m),

J =
2

α

∫ θmax

θmin

dθ

θ′
sin2 θ

(

βf ′1 + ω1

)

= 2
√

1 − κ2/ω2
1

[

E(m) − 1 − β2κ2/α2ω2
1

1 − κ2/ω2
1

K(m)

]

.

In addition, we compute ∆ϕ1

∆ϕ ≡ ∆ϕ1 = 2

∫ θmax

θmin

dθ

θ′
f ′1 = −2

β/α
√

1 − κ2/ω2
1

[

Π

(

1 − β2

α2
|m
)

− K(m)

]

.

Defining parameters

ǫ ≡ 1 −m, v ≡ β/α,

we can rewrite these as

Es = 2
√

(v2 − 1)(1 − ǫ)K(1 − ǫ), J = 2

√

v2 − 1

v2 − ǫ
[E(1 − ǫ) − ǫK(1 − ǫ)] ,

∆ϕ = −2v

√

v2 − ǫ

v2 − 1

[

Π
(

1 − v2|1 − ǫ
)

− K(1 − ǫ)
]

Es − ∆ϕ = 2v

√

v2 − ǫ

v2 − 1

[

Π
(

1 − v2|1 − ǫ
)

−
(

1 − (v2 − 1)
√

1 − ǫ

v
√
v2 − ǫ

)

K(1 − ǫ)

]

.

– 12 –



J
H
E
P
0
7
(
2
0
0
8
)
1
0
5

We proceed as in the GM case to find the ǫ expansion of these quantities. The difference

is that now we impose J to remain finite, which gives

J = 2

√

1 − 1

v2
0

, v1 =
(v2

0 − 1)
[

v2
0(1 + log(16)) − 2

]

4v0
, v2 = −v0(v

2
0 − 1)

4
.

From the expansion for ∆ϕ, we obtain ǫ as a function of ∆ϕ and J

ǫ = 16 exp

(

−
√

4 − J 2

J

[

∆ϕ+ arcsin

(J
2

√

4 − J 2

)]

)

.

Using these results in the expansion for Es − ∆ϕ, one can see that the divergent terms

cancel each other for J 2 < 2 and the finite result is

Es −
√
λ

2π
∆ϕ =

√
λ

π

[

1

2
arcsin

(J
2

√

4 −J 2

)

+
J 3

16
√

4 −J 2
ǫ

]

=

√
λ

π

[

p

2
+ 4 sin2 p

2
tan

p

2
exp

(

−∆ϕ+ p

tan p
2

)]

, (4.7)

where we used the identification [24, 36]

arcsin (J /2) =
p

2
= θ̄ = π/2 − arcsin

κ

ω1
.

This is the leading finite-size correction to the SS “E−∆ϕ” relation. Let us also note that

to the leading order, the length L of this SS string can be computed to be

L =
α

κ
(∆ϕ+ p) .

4.2 Strings on Rt × S3

In the case C2 = 0, eq. (2.13) can be written as

(cos θ)′ = ∓α
√

ω2
1 − ω2

2

α2 − β2

√

(z2
+ − cos2 θ)(cos2 θ − z2

−), (4.8)

where

z2
± =

1

2(1 − ω2

2

ω2

1

)

{

y1 + y2 −
ω2

2

ω2
1

±
√

(y1 − y2)2 −
[

2 (y1 + y2 − 2y1y2) −
ω2

2

ω2
1

]

ω2
2

ω2
1

}

,

y1 = 1 − κ2/ω2
1 , y2 = 1 − β2κ2/α2ω2

1.

The solution of (4.8) can be obtained as

cos θ = z+dn (Cξ|m) , C = ∓α
√

ω2
1 − ω2

2

α2 − β2
z+, m ≡ 1 − z2

−/z
2
+. (4.9)

The solutions of eqs. (2.15) and (2.16) now read

f1 =
2β/α

z+
√

1 − ω2
2/ω

2
1

[

F (am(Cξ)|m) − κ2/ω2
1

1 − z2
+

Π

(

am(Cξ),−z
2
+ − z2

−
1 − z2

+

|m
)]

,

f2 =
2βω2/αω1

z+
√

1 − ω2
2/ω

2
1

F (am(Cξ)|m) .
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Therefore, the full string solution is given by

Z0 = R exp(iκτ),

W1 = R
√

1 − z2
+dn

2 (Cξ|m) exp

{

iω1τ +
2iβ/α

z+
√

1 − ω2
2/ω

2
1

×
[

F (am(Cξ)|m) − κ2/ω2
1

1 − z2
+

Π

(

am(Cξ),−z
2
+ − z2

−
1 − z2

+

|m
)]}

,

W2 = Rz+dn (Cξ|m) exp

{

iω2τ +
2iβω2/αω1

z+
√

1 − ω2
2/ω

2
1

F (am(Cξ)|m)

}

. (4.10)

We note that (4.10) contains both cases: α2 > β2 for the GM and α2 < β2 for the SS.

To find the CSG solution related to (4.10), we insert (4.9) into (3.8) and (3.9) to get

sin2(φ/2) =
ω2

1/M
2

β2/α2 − 1

[(

1 − κ2/ω2
1

)

−
(

1 − ω2
2/ω

2
1

) (

z2
+cn

2(Cξ|m) + z2
−sn

2(Cξ|m)
)]

.(4.11)

After that, we use (4.11) in (3.5) and integrate. The result is

χ =
A

β
(βσ + ατ) − Cχ(ασ + βτ) +

Cχ

CD
Π(am(Cξ), n|m) , (4.12)

where A/β and Cχ are given in (A.1), C2 = 0, and

D =
ω2

1/M
2

β2/α2 − 1

[(

1 − κ2/ω2
1

)

−
(

1 − ω2
2/ω

2
1

)

z2
+

]

, n =

(

1 − ω2
2/ω

2
1

)

(z2
+ − z2

−)
(

1 − κ2/ω2
1

)

−
(

1 − ω2
2/ω

2
1

)

z2
+

.

Hence for the present case, the CSG field ψ = sin(φ/2) exp(iχ/2) is defined by (4.11)

and (4.12).

In a recent paper [41], the finite-size effects for dyonic GM have been considered and

the leading order correction to the Es − J1 relation has been found to be

Es − J1 =
√

J 2
2 + 4 sin2(p1/2)

−8
sin3(p1/2)

cosh(θ̃/2)
exp

[

− 2 sin2(p1/2) cosh2(θ̃/2)

sin2(p1/2) + sinh2(θ̃/2)

( J1/2

sin(p1/2) cosh(θ̃/2)
+ 1

)

]

,

where

cosh(θ̃/2) =

√

(J2/2)2 + sin2(p1/2)

sin(p1/2)
.

Our concern here is the SS for the case α2 < β2 with two angular momenta J1 and

J2. The computation of the conserved quantities (2.11) and ∆ϕ1 now gives

Es =
2κ(β2/α2 − 1)

ω1

√

1 − ω2
2/ω

2
1z+

K
(

1 − z2
−/z

2
+

)

,

J1 =
2z+

√

1 − ω2
2/ω

2
1

[

E
(

1 − z2
−/z

2
+

)

− 1 − β2κ2/α2ω2
1

z2
+

K
(

1 − z2
−/z

2
+

)

]

,
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J2 = − 2z+ω2/ω1
√

1 − ω2
2/ω

2
1

E
(

1 − z2
−/z

2
+

)

,

∆ϕ = − 2β/α
√

1 − ω2
2/ω

2
1z+

[

κ2/ω2
1

1 − z2
+

Π

(

−z
2
+ − z2

−
1 − z2

+

|1 − z2
−/z

2
+

)

−K
(

1 − z2
−/z

2
+

)

]

.

Our next step is to introduce the new parameters

ǫ ≡ z2
−/z

2
+, v ≡ β/α, u ≡ ω2

2/ω
2
1 ,

and to rewrite Es, J1, J2, ∆ϕ in the form

Es = 2KeK (1 − ǫ) ,

J1 = 2K11 [E (1 − ǫ) −K12K (1 − ǫ)] , (4.13)

J2 = 2K2E (1 − ǫ) ,

∆ϕ = 2Kϕ1 [Kϕ2Π(Kϕ3|1 − ǫ) − K (1 − ǫ)] .

The explicit ǫ-expansions of the coefficients Ke, . . . ,Kϕ3 are given as functions of u and v

in appendix B.

We also need to consider the ǫ-expansion for u and v as follows:

v(ǫ) = v0 + v1ǫ+ v2ǫ log(ǫ), u(ǫ) = u0 + u1ǫ+ u2ǫ log(ǫ).

The coefficients can be determined by the condition that J1 and J2 should be finite,

v0 =
2J1

√

(

J 2
1 − J 2

2

) [

4 −
(

J 2
1 − J 2

2

)]

, u0 =
J 2

2

J 2
1

, (4.14)

v1 =
(1 − u0)v

2
0 − 1

4(u0 − 1)(v2
0 − 1)v0

{

(u0 − 1)v4
0(1 + log(16)) − 2

+ v2
0 [3 + log(16) + u0(log(4096) − 5)]

}

, (4.15)

v2 = −v0
[

1 − (1 − u0)v
2
0

] [

1 + 3u0 − (1 − u0)v
2
0

]

4(1 − u0)(v2
0 − 1)

,

u1 =
u0

[

1 − (1 − u0)v
2
0

]

log(16)

v2
0 − 1

, u2 = −u0

[

1 − (1 − u0)v
2
0

]

v2
0 − 1

.

The parameter ǫ can be obtained from ∆ϕ as follows:

ǫ = 16 exp

(

−
√

(1 − u0)v2
0 − 1

v2
0 − 1

[

∆ϕ+ arcsin

(

2
√

(1 − u0)v2
0 − 1

(1 − u0)v2
0

)])

. (4.16)

From eqs. (4.14), (4.15) and (4.16), Es − ∆ϕ can be derived as

Es − ∆ϕ = arcsinN(J1,J2) + 2
(

J 2
1 − J 2

2

)

√

4
[

4 −
(

J 2
1 − J 2

2

)] − 1 (4.17)

× exp

[

−2
(

J 2
1 −J 2

2

)

N(J1,J2)
(

J 2
1 − J 2

2

)2
+ 4J 2

2

[∆ϕ+ arcsinN(J1,J2)]

]

, (4.18)
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N(J1,J2) ≡ 1

2

[

4 −
(

J 2
1 − J 2

2

)]

√

4
[

4 −
(

J 2
1 − J 2

2

)] − 1. (4.19)

Here J 2
1 − J 2

2 < 2 is assumed. Finally, by using the SS relation between the angular

momenta

J1 =
√

J 2
2 + 4 sin2(p/2),

we obtain (−π/2 ≤ p ≤ π/2)

Es −
√
λ

2π
∆ϕ =

√
λ

π

[

p

2
+ 4 sin2 p

2
tan

p

2
exp

(

− tan p
2 (∆ϕ+ p)

tan2 p
2 + J 2

2 csc2 p

)]

. (4.20)

This is our final result for the leading finite-size correction to the “E−∆ϕ” relation for the

SS string with two angular momenta. It is obvious that for J2 = 0 (4.20) reduces to (4.7)

as it should be.

5. Concluding remarks

In this paper, by using the reduction of the string dynamics on Rt×S3 to the NR integrable

system, we gave an explicit mapping connecting the parameters of all string solutions

described by this dynamical system and the parameters in the corresponding solutions of

the complex sine-Gordon integrable model. In the framework of this NR approach, we

found finite-size string solutions, their images in the (complex) sine-Gordon system, and

the leading finite-size corrections to the single spike “E−∆ϕ” relation: both for strings on

Rt ×S2 and Rt ×S3 backgrounds. It is an important open question to compare our results

on the finite-size effects of the single spikes with the Lüscher corrections obtained from the

exact S-matrices. The classical scattering amplitude computed in [36] turns out to be not

sufficient since its complete pole structure is not clear. We hope that our results in the

classical limit provide a clue to figure out the exact quantum S-matrix for the single spikes.

The GM and SS energy-charge relations for strings on Rt × S5 are already known

for the infinite case [18, 21]. This opens a possibility to find the finite-size effects for

such generalized string configurations. We are convinced that the NR approach will be

effective in this case too. An evident direction of further development is to consider string

configurations in the AdS part of the full AdS5 ×S5 background. It is known [26] that the

corresponding integrable system will be again of NR-type, but with indefinite signature.

Another interesting case is strings with nonzero spins on both AdS5 and S5 part of the

target space. In this case, we will have two NR-type systems. While the equations of

motion for them will decouple, the variables of the two NR systems will be mixed in the

constraints [26]. Thus, a new kind of problem will appear. Nevertheless, there may exist

string configurations for which this problem is solvable as found in [21] for example.
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A. Relation between the NR system and CSG

A.1 Explicit relations between the parameters

In the general case, the relation between the parameters in the solutions of the NR and

CSG integrable systems is given by

K2 = R2M2, Cφ =
2

α2 − β2

{

3M2 − 2

[

κ2 +
(κ2 − ω2

1) − ω2
2

1 − β2/α2

]}

,

1

4
M4(α2−β2)

A2

β2
= M4

(

M2 − κ2 +
ω2

2

1 − β2/α2

)

−
(

κ2 − ω2
1

1 − β2/α2

){

M4 +

[

M2 −
(

κ2 − ω2
1

1 − β2/α2

)](

κ2 − ω2
1

1 − β2/α2

)

−
[

2M2 −
(

κ2 − ω2
1

1 − β2/α2

)](

κ2 − ω2
2

1 − β2/α2

)}

(A.1)

− (ω2
1 − ω2

2)

ω2
1 (1 − β2/α2)3

{

[

M2
(

1 − β2/α2
)

− κ2
]

(ω2
1 − ω2

2)Č
2
2

−
[

M2
(

1−β2/α2
)

−(κ2−ω2
1)
]

[

2
β

α
ω2κ

2Č2+
(

κ2 − ω2
1

)

(

β2

α2
κ2−ω2

1

)]}

,

1

4
M4(α2−β2)C2

χ = −
(

κ2 − ω2
1

1 − β2/α2

)2 [

κ2 − (κ2 − ω2
1) + ω2

2

1 − β2/α2

]

+
(ω2

1 − ω2
2)

ω2
1 (1 − β2/α2)3

{

κ2(ω2
1 − ω2

2)Č
2
2 − (κ2 − ω2

1)

×
[

2
β

α
ω2κ

2Č2 +
(

κ2 − ω2
1

)

(

β2

α2
κ2 − ω2

1

)]}

, (A.2)

where Č2 = C2/α. Thus, we have expressed the CSG parameters Cφ, A and Cχ through

the NR parameters α, β, κ, ω1, ω2, C2. The mass parameter M remains free.

Let us consider several examples, which illustrate the established NR - CSG corre-

spondence. We are interested in the GM and SS configurations on Rt × S2 and Rt × S3.

From the NR-system viewpoint, we have to set C2 = 0 in (2.13), (2.15) and (2.16) for the

GM and SS string solutions. This condition is to require one of the turning points, where

θ′ = 0, to lay on the equator of the sphere, i.e. θ = π/2 [18].

A.2 On Rt × S2

We begin with the Rt × S2 case, when C2 = ω2 = 0 and θ′ in (2.13) takes the form

θ′ =
±αω1

(α2 − β2) sin θ

√

(

β2κ2

α2ω2
1

− sin2 θ

)(

sin2 θ − κ2

ω2
1

)

. (A.3)

A.2.1 The giant magnon

The GM solution corresponds to κ2 = ω2
1 with α2 > β2, which is given by

cos θ =

√

1 − β2/α2

cosh

(

ω1
σ+τβ/α√
1−β2/α2

) .
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From (2.15), one finds f2 = 0 and

f1 = arctan

[

α

β

√

1 − β2/α2 tanh

(

ω1
σ + τβ/α
√

1 − β2/α2

)]

.

For R2 = M2 = ω2
1 = 1, β/α = − sin θ0, this string solution coincides with the Hofman-

Maldacena solution [15], and is equivalent to the solution in [17] for Rt × S2 after the

identification W1 = Z1 exp(iπ/2), W2 = Z2. Now, the parameters in (3.10) take the values

K2 = R2ω2
1 = 1, M2 = ω2

1 = 1,

Cφ =
2ω2

1

α2 − β2
=

2

α2 cos2 θ0
, A = Cχ = 0,

and from eqs. (3.7), (3.8) and (3.9)) the corresponding SG solution becomes

sin(φ/2) =
1

cosh
(

σ−τ sin θ0

cos θ0
− η0

) .

This can be also obtained from (3.11) by setting ω2 = 0.

However, for M2 > ω2
1 = κ2, we have

A = 2β

√

M2 − ω2
1

α2 − β2
6= 0.

This case is related to the CSG system instead of the SG one. It is interesting to find the

CSG solution associated with it. Using (3.7) again, we find

sin(φ/2) =
ω1

M cosh

(

ω1
σ+τβ/α√
1−β2/α2

− η0

) , χ = 2

√

M2 − ω2
1

1 − β2/α2

(

β

α
σ + τ

)

.

A.2.2 The single spike

The SS solution corresponds to β2κ2 = α2ω2
1. In this case, the expressions for θ and f1 are

cos θ =

√

1 − α2/β2

cosh (Cξ)
, f1 = −ω1(σα/β + τ) + arctan

[

β

α

√

1 − α2/β2 tanh (Cξ)

]

,

and the corresponding string solution is

W1 = R

√

1 − 1 − α2/β2

cosh2 (Cξ)
exp

{

−iω1σα/β + i arctan

[

β

α

√

1 − α2/β2 tanh (Cξ)

]}

,

W2 =
R
√

1 − α2/β2

cosh (Cξ)
, Z0 = R exp

(

i
α

β
ω1τ

)

,

where we used a short notation

Cξ ≡ ω1
α

β

σα/β + τ
√

1 − α2/β2
.

The “dual” SG solution can be obtained from (3.14) by setting ω2 = 0. If we choose

R = 1, α/β = sin θ1, ω1 = − cot θ1, β = 1, the SS solution on Rt×S2 in [24] is reproduced.

– 18 –
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A.3 On Rt × S3

A.3.1 The giant magnon

Let us continue with the Rt × S3 case, when C2 = 0, ω2 6= 0. First, we would like to

establish the correspondence between the dyonic GM string solution [18] (κ2 = ω2
1) to

those found in [17]

Z1 =
1√

1 + k2

{

tanh
[

cosαD
(

σ
√

1 + k2 cos2 αD − kτ cosαD
)]

− ik
}

exp(iτ),

Z2 =
1√

1 + k2

exp
[

i sinαD
(

τ
√

1 + k2 cos2 αD − kσ cosαD
)]

cosh
[

cosαD
(

σ
√

1 + k2 cos2 αD − kτ cosαD
)] ,

where the parameter k is related to the soliton rapidity θ̂ through the equality

k =
sinh θ̂

cosαD
,

and αD determines the U(1) charge carried by the CSG soliton [17].

The solutions of eqs. (2.13), (2.15) and (2.16) are given by

cos θ =
cos θ0

cosh (Cξ)
, f1 = arctan [cot θ0 tanh(Cξ)] , f2 =

βω2

α2 − β2
ξ,

sin2 θ0 ≡ β2ω2
1

α2(ω2
1 − ω2

2)
, C ≡ α

√

ω2
1 − ω2

2

α2 − β2
cos θ0.

Then, the comparison shows that the two solutions are equivalent if

Z1 exp(iπ/2) = W1 = R sin θ exp [i (ω1τ + f1)] ,

Z2 = W2 = R cos θ exp [i (ω2τ + f2)] ,

R = κ = ω1 = 1, α = cosαD
√

1 + k2 cos2 αD,

β = −k cos2 αD, ω2 =
sinαD

√
1 + k2 cos2 αD

.

As a consequence, the CSG parameters in (3.10) reduce to

Cφ =
2

cos2 αD

(

1 + 2 sin2 αD
)

], A = k sin(2αD), Cχ = 0, K2 = 1.

A.3.2 The single spike

Now, let us turn to the SS solutions onRt×S3 as described by the NR integrable system [27].

By using the SS-condition β2κ2 = α2ω2
1 in (2.13) one derives

θ′ =
α
√

ω2
1 − ω2

2

α2 − β2

cos θ

sin θ

√

sin2 θ − α2ω2
1

β2(ω2
1 − ω2

2)
,

whose solution is given by

cos θ =

√

(1 − α2/β2)ω2
1 − ω2

2
√

ω2
1 − ω2

2 cosh(Cξ)
, Cξ ≡

√

ω2
1 −

ω2
2

1 − α2/β2

α(σα/β + τ)
√

β2 − α2
.
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By using (2.15), (2.16), one finds the following expressions for the string embedding coor-

dinates ϕj = ωjτ + fj

ϕ1 = −ω1σα/β + arctan

{

β

αω1

√

(

1 − α2

β2

)(

ω2
1 − ω2

2

1 − α2/β2

)

tanh(Cξ)

}

ϕ2 = −ω2
α(σ + τα/β)

β(1 − α2/β2)
.

Comparing the above results with the SS string solution given in (4.1)–(4.7) of [36], we see

that the two solutions coincide for

R = 1, sin θ1 = − 1
√

ω2
1 − ω2

2

, sin γ1 =
ω2

ω1
, ω1 = −β

α
. (A.4)

From (3.12), the CSG parameters are

Cφ =
2

β2
(

1 − sin2 θ1 cos2 γ1

)

[

4 − 3M2 +
2cos4 γ1

sin2 γ1

(

1 − sin2 θ1 cos2 γ1

)

]

, K2 = M2,

A =
M2 − 1

M2
√

1 − sin2 θ1 cos2 γ1

√

cos4 γ1

sin2 γ1

(

1 − sin2 θ1 cos2 γ1

) −M2,

Cχ = − 2 sin γ1

M2β
(

1 − sin2 θ1 cos2 γ1

) .

Comparing (A.4) with (3.13), one sees that the solution found in [36] corresponds actually

to M2 = 1 which leads to A = 0. Hence, the “dual” CSG solution is of the type (3.15).

B. ǫ-expansions

We use the following expansions for the elliptic functions

K(1 − ǫ) ∝ −1

2
log ǫ (1 +O(ǫ)) + log(4) (1 +O(ǫ)) ,

E(1 − ǫ) ∝ 1 − ǫ

(

1

4
− log(2)

)

(1 +O(ǫ)) − ǫ

4
log ǫ (1 +O(ǫ))

Π(n|1 − ǫ) ∝ log ǫ

2(n − 1)
(1 +O(ǫ)) +

√
n log

(

1+
√

n
1−

√
n

)

− log(16)

2(n − 1)
(1 +O(ǫ)) .

The expansions for the coefficients in (4.13) are given by

Ke ∝ v2 − 1
√

v2(1 − u) − 1
− v2(1 − u)2 − 1

2
√

v2(1 − u) − 1(1 − u)
ǫ,

K11 ∝
√

v2(1 − u) − 1

v2(1 − u)2
−
√

v2(1 − u) − 1
(

1 + v2(2u− 1)
)

2v3(v2 − 1)(1 − u)2
ǫ,

K12 ∝
(

1 − v2u

v2 − 1

)

ǫ,
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K2 ∝ −
√

(v2(1 − u) − 1) u

v2(1 − u)2
+

√

(v2(1−u)−1)u
v2(1−u)2

(

1 + v2(2u− 1)
)

2v2(v2 − 1)(1 − u)
ǫ,

Kϕ1 ∝ − v
√

1 − 1/v2 − u
− 1 + v2(2u− 1)

2(v2 − 1)
√

v2(1 − u) − 1(1 − u)
ǫ,

Kϕ2 ∝ 1 − u+

(

1 − v2(1 − u)
)

u

v2 − 1
ǫ,

Kϕ3 ∝ 1 − v2(1 − u) + 2v2u

(

1 − v2u

v2 − 1

)

ǫ.
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